VSEPR for Chemistry 1000: The Silberberg Summary and Representation on Paper

The Two-Electron Pair Shape Family
Examples

Note that separate diagrams should be used for the Lewis Diagram and the VSEPR structure. The VSEPR diagram should be accurate for structure and does not show bonding.
Always indicate the bond angles, (i) on the diagram as shown, or (ii) catalogued beside the picture as follows: $\quad \angle(\mathrm{FBeF})=180^{\circ}$ This method is useful when there are lots of values.
$\mathrm{BeF}_{2} \quad: \stackrel{\ddot{F}}{\ddot{\circ}} \mathrm{Be}-\ddot{F}: \quad \mathrm{F}-\mathrm{Be}-\mathrm{F} \quad \mathrm{BeH}_{2}$

NCO
The \angle symbol means "angle" and is taken from geometry. Thus the $\angle(\mathrm{ABA})=120^{\circ}$ or $\angle(\mathrm{ABA})>120^{\circ}$ or $\angle(\mathrm{ABA})<120^{\circ}$ are all possible designations.

- Any valid resonance "isomer" can be used to determine the structure.
- Remember, that for the purpose of determining shape, multiple bonds count as single structure-determining electron pairs around a central atom.
- For $\mathrm{AX}_{2} \mathrm{E}$ and other "XE" structure the VSEPR diagram is best drawn with the position of the "invisible" lone pairs shown (O_{3} middle); alternate (O_{3} r.h.s.) is permitted.
SO_{3}

O_{3}
SO_{2}

The Four-Electron Pair Shape Family
Examples
Practice
Class

- For non-flat structures you must use "Wedges notation" to represent the 3D shape.
- The shapes drawn here attempt to be accurate perspective renderings of the views shown by the computer graphics at l.h.s. from Silberberg.
- Solid wedges come forward of the paper; dashed wedges go behind the paper.
- Wedges are shorter than line bonds because the perspective reduces apparent length.

$\underline{\mathrm{SiCl}_{4}}$

$\mathrm{ClO}_{4}{ }^{-}$

$\mathrm{ClO}_{3}{ }^{-}$

$\underline{\mathrm{OF}}_{2}$

- For $\mathrm{AX}_{2} \mathrm{E}_{2}$, where the shape is flat, it is highly preferable to rotate the view so that the three visible atoms are drawn in the page of the paper.
- The first view (middle) showing the location of lone pairs in perspective is preferred.

Examples

The more structural electron pairs, the more space that is typically needed!

- SOF_{4} is an interesting example of AX_{5} geometry where the bond angles are probably not quite ideal, but without further knowledge it's hard to be sure.
- Also note that the O atom is equatorial: for all trigonal bipyramidal shape family structures, the most electronegative atoms always are in the axial position.
- Again the option exists to draw in the LP or to leave them off; the first is better.
- Note that in $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ and ClF_{3}, the axial bonds bend back from perfect linear.
- But in XeF_{2}, all forces balance out and the shape is perfectly linear.
SOF_{4}

$\mathrm{XeO}_{2} \mathrm{~F}_{2}$

ClF_{3}

$\underline{X e F}_{2}$

Practice

