

Chemistry 2600

Chapter 14 Mass Spectrometry

- Mass spectrometry is a technique that gives information on the mass of a compound and the mass of its fragments.
- A *mass spectrometer* is used to measure the masses of individual molecules and to break the molecule into fragments.
- The patterns of these fragments (masses and relative abundances) can be used to identify the compound's structure.

electron

beam

- The Experiment:
 - The vaporized samples are ionized (lose an electron) creating molecular ions.

molecule

[molecular ion]^{+•} (M^{+•} or M⁺) + e^-

 Although ionization can be accomplished in a number of ways, electron impact is the most common method used.

- The ions are accelerated then deflected by a magnetic field, separating the ions by size and charge expressed as a *massto-charge* ratio (*m*/*z*).
- Since the charge of the ions are almost always +1, the m/z is effectively a measure of the mass of the ions.
- The different fragments hit a detector and the results are recorded.

• The Experiment:

 \cap

- 5 Important Characteristics of a Mass Spectrum:
 - 1. Mass of the Molecular ion
 - 2. Mass of the Base peak
 - 3. Presence or absence of heavy isotopes
 - 4. Presence of odd number of N atoms
 - 5. Fragments formed from the molecular ion

The Mass Spectrum

- A *low-resolution* mass spectrum reports the detected ion masses to the nearest amu.
- The base peak is the tallest peak (assigned an abundance of 100%). All other peaks are relative to the base peak.

The Mass Spectrum

 The M⁺ peak is typically the one with the highest mass, however the presence of different isotopes can lead to peaks of higher mass; the M+1 peak in this case.

- The height of an isotope peak reflects the percentage of the heavier isotopes in the compound.
- For atoms with isotopes of high natural abundance (Cl and Br), the molecular ion (M⁺ and M + 2) peak patterns are very diagnostic.

Element	Isotope	Mass (amu)	Natural Abundance (%)
Hydrogen	¹ H	1.007825	99.9885
	² H	2.014102	0.0115
Carbon	¹² C	12.000000	98.93
	¹³ C	13.0033355	1.07
Nitrogen	¹⁴ N	14.003074	99.632
	¹⁵ N	15.000109	0.368
Oxygen	¹⁶ 0	15.994915	99.575
	¹⁸ 0	17.999160	0.205
Fluorine	¹⁹ F	18.998403	100.00
Chlorine	³⁵ Cl	34.968853	75.78
	³⁷ Cl	36.965903	24.22
Bromine	⁷⁹ Br	78.918338	50.69
	⁸¹ Br	80.916291	49.31

• For the mass spectrum of 2-chloropropane, the M⁺ and M + 2 peaks are in ~3:1 ratio as dictated by the isotope abundances. ¹²C₃¹H₇³⁵Cl (M⁺) ${}^{12}C_{3}{}^{1}H_{7}{}^{37}CI (M+2)$ × 34,968853 amu × 36.965903 amu 7 × 1.007825 amu 7×1.007825 amu 3×12.000000 amu 3×12.000000 amu 78.023628 amu 80.020678 amu 78 amu (to the nearest amu) 80 amu (to the nearest amu) base peak 100 Relative intensity (%) 80 60 M⁺ peak M+2 peak 40 20 0 50 0 10 20 30 40 60 70 80 90 m/z

- Heavy isotopes also form diagnostic peak patterns when multiple heave isotopes are present.
- Why is the M+ peak in a 1:2:1 ratio?

SDBS (https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi)

• The ratio of peaks is also predictable for mixed isotope systems.

SDBS (https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi)

 \cap

Number of Nitrogen Atoms

- Because most of the major atoms that make up organic molecules have even masses and form even number of bonds, most molecular ions have an even mass.
- Since nitrogen typically forms an odd number of bonds, molecules with an odd number of nitrogen atoms will have an odd number mass.

Number of Nitrogen Atoms

SDBS (https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi)

Ο

Fragmentation Patterns

- Most peaks in a mass spectrum result from the fragmentation of the molecular ions.
- These fragmentation peaks and their relative abundances serve as a 'fingerprint' for the molecule.
- Not all fragments are charged and only the charged ones will be detected (recall that mass spectrometry only detects charged species).

 Sometimes fragmentation is so severe that the M⁺ peak is weak or even missing.

Fragmentation Patterns

- Typically many, but not all, the other peaks can be linked to relatively stable fragmentation pieces.
- One common pattern is to break bonds on either side of a carbonyl or alcohol group.

Fragmentation Patterns

 Molecules with long alkyl chains tend to split apart in 14 m/z units, CH₂ groups.

SDBS (https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi)

High-Resolution Mass Spectrometry

- High-Resolution Mass Spectrometry (HRMS) is used to accurately determine the molecular formula of organic molecules.
- HRMS measures the molecular mass to a very high degree of precision (4 decimal places).

