Sketching Atomic Orbitals: a Primer for Chemistry 1000

s orbitals are all spherical; in sketching them we ignore any inner nodes that distinguish $1 s$ from $2 s$, etc.

Similarly, for all the more complex orbitals, we draw only the simplest version, so that for p we sketch $2 p$, and for d we sketch $3 d$. Beyond this it gets too complicated, and we will not ask you to learn the f orbital shapes. One reason for this is that the f orbitals are very little used in any chemical bonds.
p orbitals all have the same "barbell" shape, but differ in orientation.

There are two approaches to drawing p orbitals. (1) Drawing on an $x y z$ grid in a perspective mode emphasizes their differing orientations simultaneously:
(2) Draw them in two dimensions, by alternating the axis labels (be sure to maintain a right-hand coordinate system!)

d orbitals come in two distinct types, those that are on the axes, and those that are between the axes. They present a challenge to draw in three dimensions, so it is much easier to draw the "between" ones only in two dimensions.

The on-axes orbitals are $d_{x^{2}-y^{2}}$ and the $d_{z^{2}}$ orbitals:
The between-axes orbitals are the $d_{x y}, d_{\mathrm{xz}}$ and $d_{y z}$ orbitals:

Test yourself using the blank grids supplied below.

