Sketching Atomic Orbitals: a Primer for Chemistry 1000

s orbitals are *all* spherical; in sketching them we *ignore* any inner nodes that distinguish 1s from 2s, etc.

Similarly, for all the more complex orbitals, we draw *only the simplest version*, so that for p we sketch 2p, and for d we sketch 3d. Beyond this it gets too complicated, and we will *not* ask you to learn the f orbital shapes. One reason for this is that the f orbitals are very little used in any chemical bonds.

p orbitals all have the same "barbell" shape, but differ in orientation.

There are two approaches to drawing *p* orbitals. (1) Drawing on an *xyz* grid in a *perspective* mode emphasizes their differing orientations simultaneously:

(2) Draw them in two dimensions, by alternating the **axis labels** (*be sure to maintain a right-hand coordinate system!*)

d orbitals come in two distinct types, those that are on the axes, and those that are between the axes. They present a challenge to draw in three dimensions, so it is much easier to draw the "between" ones only in two dimensions.

The on-axes orbitals are $d_{x^2-y^2}$ and the d_{z^2} orbitals:

The between-axes orbitals are the d_{xy} , d_{xz} and d_{yz} orbitals:

Test yourself using the blank grids supplied below.

