Criscione CD, van Paridon BJ, Gilleard JS, Goater CP.
Clonemate cotransmission supports a role for kin selection in a puppeteer parasite. Proceedings of the National Academy of Science. 2020;117(11):5970-5976.
Dempsey ZW, Goater CP, Burg TM.
Living on the edge: comparative phylogeography and phylogenetics of Oreohelix land snails at their range edge in Western Canada. BMC Evolutionary Biology. 2020;20(3):s12862-019-1566-1.
AbstractBackground: The biodiversity and distributions of terrestrial snails at local and regional scales are influenced by their low vagility and microhabitat specificity. The accessibility of large-bodied species and their characteristically high levels of genetic polymorphism make them excellent ecological and evolutionary models for studies on the phylogeography, phylogenetics, and conservation of organisms in fragmented populations. This study aims to elucidate the biodiversity, systematics, and distributions of genetic lineages within the genus Oreohelix at the northern and western periphery of their range.Results: We found four mitochondrial clades, three of which are putative subspecies of Oreohelix subrudis. One clade was geographically widespread, occurring within numerous sites in Cypress Hills and in the Rocky Mountains, a second was geographically restricted to the Rocky Mountains in Alberta, and a third was restricted to the Cypress Hills region. A fourth clade was the small-bodied species, O. cooperi. ITS2 sequence and screening data revealed three genetic clusters, of which one was O. cooperi. Cluster 1 contained most individuals in COI clade X and some from clade B and cluster 2 was predominantly made up of individuals from COI clades B and B′ and a few from clade X. ITS2 alleles were shared in a narrow contact zone between two COI clades, suggestive of hybridization between the two.Conclusions: A sky island known as Cypress Hills, in southeastern Alberta, Canada, is a biodiversity hotspot for terrestrial land snails in the genus Oreohelix. The observed phylogeographic patterns likely reflect reproductive isolation during the Last Glacial Maximum, followed by secondary contact due to passive, long-range dispersal resulting from low vagility, local adaptation, and complex glacial history.