Strong links between teleconnections and ecosystem exchange found at a Pacific Northwest old growth forest from flux tower and MODIS EVI data

wharton_gcb2009.pdf556 KB

Abstract:

Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Niño-Southern Oscillation (ENSO). We use 9 years of eddy covariance CO2, H2O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and 8 years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP=+217 g C m−2 yr−1, 1999) to a source (NEP=−100 g C m−2 yr−1, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P<0.01) during positive (NEP=−0.27 g C m−2 day−1, WUE=4.1 mg C g−1 H2O, LUE=0.94 g C MJ−1) and negative (NEP=+0.37 g C m−2 day−1, WUE=3.4 mg C g−1 H2O, LUE=0.83 g C MJ−1) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO2 exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase CO2 uptake variability in Pacific Northwest conifer forests.

Publisher's Version